Learning Causal Biological Networks With the Principle of Mendelian Randomization
نویسندگان
چکیده
منابع مشابه
Mendelian Randomization Causal Analysis Adiposity as a cause of cardiovascular disease: a Mendelian randomization study
Background: Adiposity, as indicated by body mass index (BMI), has been associated with risk of cardiovascular diseases in epidemiological studies. We aimed to investigate if these associations are causal, using Mendelian randomization (MR) methods. Methods: The associations of BMI with cardiovascular outcomes [coronary heart disease (CHD), heart failure and ischaemic stroke], and associations o...
متن کاملAutomating Mendelian randomization through machine learning to construct a putative causal map of the human phenome
A major application for genome-wide association studies (GWAS) has been the emerging field of causal inference using Mendelian randomization (MR), where the causal effect between a pair of traits can be estimated using only summary level data. MR depends on SNPs exhibiting vertical pleiotropy, where the SNP influences an outcome phenotype only through an exposure phenotype. Issues arise when th...
متن کاملMendelian randomization as an instrumental variable approach to causal inference.
In epidemiological research, the causal effect of a modifiable phenotype or exposure on a disease is often of public health interest. Randomized controlled trials to investigate this effect are not always possible and inferences based on observational data can be confounded. However, if we know of a gene closely linked to the phenotype without direct effect on the disease, it can often be reaso...
متن کاملMendelian randomization: genetic anchors for causal inference in epidemiological studies
Observational epidemiological studies are prone to confounding, reverse causation and various biases and have generated findings that have proved to be unreliable indicators of the causal effects of modifiable exposures on disease outcomes. Mendelian randomization (MR) is a method that utilizes genetic variants that are robustly associated with such modifiable exposures to generate more reliabl...
متن کاملReconstructing Causal Biological Networks through Active Learning
Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Genetics
سال: 2019
ISSN: 1664-8021
DOI: 10.3389/fgene.2019.00460